Opportunities for Dust & Loess Observations to Improve Models

Charlie Zender < zender@uci.edu>

Department of Earth System Science

University of California at Irvine

(On the Web at http://dust.ess.uci.edu/ppr/smn_dst_obs.pdf)

Presented to:

Mineral Dust Workshop, October 23, 2004

University of Colorado at Boulder

Abstract

We need more observations.

1. Overview

- 1. Generic model problems
- 2. Supply-limited environments
- 3. Reflectance-based erodibility
- 4. Loess as a dust proxy
- 5. Sensor Networks

2. Generic Model Problems

Emissions Estimates:

- 1. Global emission estimate range is *narrower* than burden estimate range
 - (a) Mobilization fluxes are measured in situ, not from satellite
 - (b) Satellite data should provide much better constraints on burden than emission
 - (c) Transport and deposition processes should compound emissions uncertainties
 - (d) Many processes are not represented or represented crudely
- 2. What proxies can be used to improve emissions estimates?

Table 1: Present Climate Dust Budget Estimates^a

Reference	\overline{E}	au	M
	${ m Tg}{ m yr}^{-1}$	Days	Tg
Duce et al. [1991]	(910)		
Tegen and Fung [1994]	3000		
Tegen and Fung [1995]	1222	5.6	18.8
Andreae [1996]	1500	4	8.4
Prospero [1996]	(358)		
Mahowald et al. [1999]	3000		
Penner et al. [2001]	2150		
<i>Ginoux et al.</i> [2001]	(478) 1814	7.1	35.9
Chin et al. [2002]	1650	6.3	28.7
Werner et al. [2002]	1060 ± 194	2.8 ± 0.5	8 ± 3
Tegen et al. [2002]	1100	7.4	22.2
Zender et al. [2003a]	$(314)\ 1490 \pm 160$	4.3 ± 1.0	17.4 ± 2
Luo et al. [2003]	1654	5.1	23
Mahowald and Luo [2003]	1654	5.1	23
Miller et al. [2003]	1018	5.2	14.6
<i>Tegen et al.</i> [2004]	1921		

^aShown are annual emissions E [Tg yr⁻¹], atmospheric turnover time τ [d], and atmospheric burden M [Tg]. Estimates of deposition to oceans are parenthesized. Order is chronological.

3. Supply-Limited Environments

Many models use "separation of constraints"

$$F_{\rm d} \propto A_{\rm m} S u_*^3 \tag{1}$$

$$A_{\rm m} = (1 - A_{\rm w})(1 - A_{\rm s})(1 - A_{\rm V})$$
 (2)

where $F_{\rm d}$ [kg m⁻² s⁻¹] is dust vertical mass flux, $A_{\rm m}$ is bare ground fraction, and S is erodibility factor. Could implement supply-limited constraints as an additional erodibility factor:

$$S = S_{\rm s} \times S_{\rm c} \tag{3}$$

where $S_{\rm s}$ is the sediment supply constraint and $S_{\rm c}$ is the crustal constraint.

- ullet Need global maps of supply limitation factors $S_{
 m s},\,S_{
 m c}$
- A_V must account for Non-Photosynthetic Vegetation (NPV)

Table 2: Erodibility Responses of Major Dust Source Regions^a

	•	-	•			
Region	P, τ	P, N	N, τ	P, U	U, τ	Cat.b
Eastern Sahel	-0.27(9)	+0.33(1)	-0.31(0)			I
Bodélé Depression	-0.28(9)	+0.26(9)	-0.31(0)			I
Western US	-0.22(0)	+0.47(1)	-0.35(0)			I
Lake Eyre Basin	-0.36(1)	+0.61(1)	-0.29(1)			I
Botswana	-0.39(1),	+0.56(2),	-0.28(9)			I
	-0.23(0)	+0.31(0)				
Gobi Desert	, ,	` ,	-0.28(2)			I
China Loess Plateau	-0.27(0)					II
Great Salt Lake	-0.37(0)	-0.27(0)		+0.26(0)		II
Zone of Chotts	+0.21(44)) +0.42(26))	+0.26(0)		III
Tigris/Euphrates	+0.21(14)) -0.26(8)				III
Saudi Arabia	+0.36(0)	-0.27(0)				IV
Oman	+0.40(0)					IV
Tarim Basin			+0.28(21)		+0.23(0),	IV
					-0.24(2)	
Thar Desert	+0.25(0),	+0.57(1)	-0.3(0),	-0.35(0)	+0.3(1)	I, IV
	-0.24(1),		-0.33(10))		
	-0.21(2)					

^aHighly significant (p < 0.01) cross-correlations r between autoregression-corrected erodibility indicators (dust AOD τ) and climate constraints (precipitation P, NDVI N, and wind speed U) from 1979–1994. Lag in months of indicated cross-correlation is shown in parentheses.

^bErodibility Category Assigned

Table 3: Erodibility Categories of Major Dust Source Regions

	• •	8
Cat.	Response ^a	Regions
I	$P\downarrow \tau, P\uparrow N, N\downarrow \tau$	Eastern Sahel, Bodélé Depression,
	Strong moisture and vegetation constraints,	Western US, Lake Eyre, Botswana,
	multiple timescales	Thar Desert (Gobi Desert)
II	$P\downarrow au$	China Loess Plateau, Great Salt Lake
	Strong moisture constraints, immediate	
	response	
III	$P \uparrow \tau$	Zone of Chotts, Tigris/Euphrates
	Supply-limited, interannual alluvial	
	recharge?	
IV	$P \uparrow \tau$	Saudi Arabia, Oman, Tarim Basin,
	Supply-limited, crustal (de-)formation	Thar Desert

 $[^]a\textsc{Positive}$ and negative correlations indicated by \uparrow and \downarrow , respectively

4. Production-Oriented Observations

Improving understanding and representation of production processes requires coordinated Production-Oriented Observations (POO).

- Saltation-sandblasting (SS) dust production models (DPMs) require *aggregate* surface soil particle size distribution as inputs.
 - SS (minimally) depends on $n_n(D)$ for 70 < D < 1000 [1]
 - SS may require dis-aggregated $n_n(D)$ (Y. Shao)
 - How to observe $n_n(D)$ in active regions?
- Evaluating DPM predictions of SS begins with evaluating saltation flux Q_s .
 - How to observe Q_s in active regions?

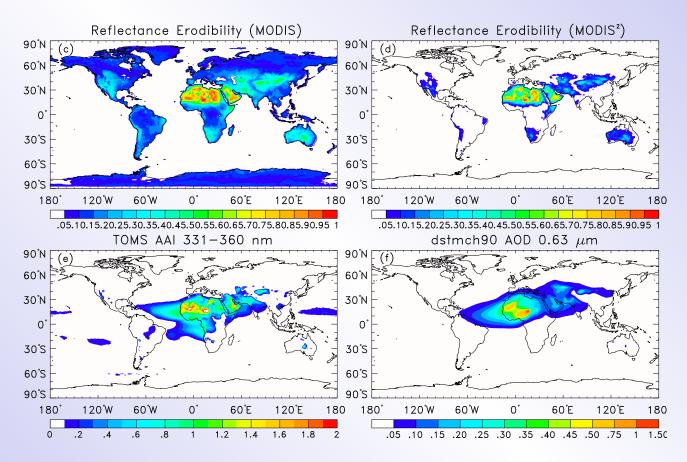


Figure 1: Erodibility factors predicted by two Reflectance-based methods: (c) Linear and (d) quadratic with MODIS surface reflectance [2]. Aerosol distribution from (e) TOMS Absorbing Aerosol Index (1980–2001) [3]. Simulated dust optical depth at 0.63 µm [10]. Note differences in scales.

- Spectral and broadband surface reflectance correlates well with FAO soil type [9]
 - Dunes/Shifting Sands have very high albedo
 - Salty playas have high albedo
 - Rocky soils have low albedo
- Broadband MODIS surface reflectance proves a good erodibility indicator [2]
 - $-\mathcal{R}$ is better erodibility proxy in Africa than East Asia
 - Needs more work...
- Retrieve aggregate size distribution for DPM from \mathcal{R} ?
 - Spectral surface reflectance sensitive to aggregate particle size distribution to within $\sim 100 \, \mu m$ [5]
 - Likely requires regional mineral composition and ground truth

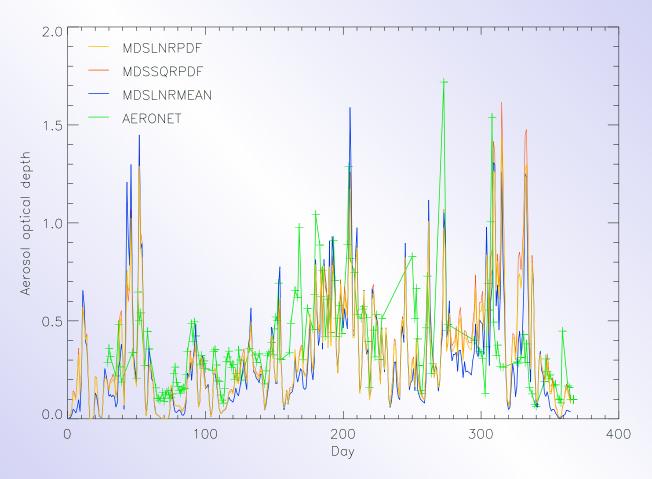


Figure 2: 1996 Aerosol Optical Depth (AOD) at Cape Verde from AERONET and three reflectance-based simulations, MDSLNRPDF, MDSSQRPDF and MDSLNRMEAN.

5. Loess Observations

Predicting dust response to climate change easy to do and hard to do right.

- Is model erosion sensitivity to climate change too high or low?
- Sediment records are far from source regions (DIRTMAP, ice cores)
- Loess deposits near source regions may provide production proxy

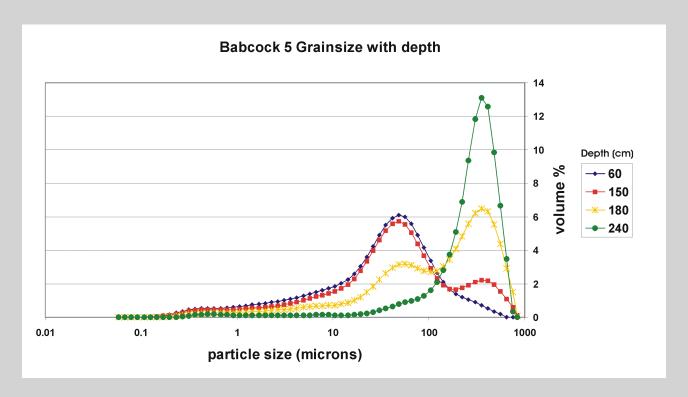


Figure 3: (a) Vertical profile of loess size distribution from Columbia Plateau (*Figure*: M. Sweeney, Washington State University).

• WSU (Busacca, Gaylord, and Sweeney) re-constructing ~ 18 ka of MARs. UCI (Zender) fitting MARs to dust emissions. (NSF ATM-0214430)

6. Evaluating DPMs with Loess Observations

- Adapting DPMs to predict loess sizes provide opportunity to compare again loess record near source regions
 - Obtaining loess Mass Accumulation Rates (MARs) difficult
 - Mass Accumulation Rates (MARs) and $n_n(D)$ record a convoluted climate, production, transport, deposition signal [6, 7, 8]
 - Global model could evaluate predicted against observed Δ MARs under climate change scenarios
 - Obtaining paleo-vegetation, winds, etc., is very difficult

7. Sensor Network

- Could propose a dust Integrated Sensor Network (ISN) (e.g., SCCOOS, SCAQMD) in Region of Interest (RoI)
- Deploy dozens (anememoters) to hundreds (sensits) of sensors in RoI
 - Sensits are saltation sensors which measure impacts per second and impact kinetic energy.
 - USGS has had three instrumented stations with Sensits and anemometers in Mojave since 1999
 - * Can inexpensive, tough, biodegradable Sensits be built?
- Missing ingredients:
 - Surface size distribution
 - Non-Photosynthetic vegetation (NPV) (remotely sensed?)
 - Surface crusting (penetrometer or remotely sensed proxy)?
- ISN would be most useful with dedicated facility

Santa Ana-driven Mojave Dust, February 2002.

(Figure: NASA SeaWiFS)

Ingredients for Integrated Sensor Network:

- 1. Detailed mapping of RoI
- 2. Sensor station development, deployment, maintenance
- 3. Fully coupled mesoscale model & simulations
- 4. Civil Expertise (e.g., BLM, CDHS, NPS, SCAQMD, USGS)
- 5. Scientific guidance
- 6. ITR?

Figure 4: (a) Example interactive environmental exploration. (b) Synchronized distributed rendering on tiled-display wall. (*Figure*: R. Pajarola).

- UCI Earth System Modeling Facility (ESMF) [12] with a HIPerWall (180 MP tiled display) [4] for visualization
- Integrate sensors, mesoscale models, and interactive forecasts to create a Lab. for Environmental Planning (LEP) [11]

8. References

References

- [1] Alfaro, S. C. and L. Gomes, 2001: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. *J. Geophys. Res.*, **106**(D16), 18075–18084.
- [2] Grini, A., G. Myhre, C. S. Zender, J. K. Sundet and I. S. A. Isaksen, 2004: Model simulations of dust sources and transport in the global troposphere. *Submitted to J. Geophys. Res.*
- [3] Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. *J. Geo-phys. Res.*, **102**(D14), 16911–16922.
- [4] Kuester, F., J.-L. Gaudiot, T. C. Hutchinson, B. Imam, S. Jenks, S. G. Potkin, S. A. Ross, S. Sorooshian, D. Tobias, B. Tromberg, F. J. Wessel and C. Zender, 2004: HIPerWall: A high-performance visualization system for collaborative Earth system sciences. "http://dust.ess.uci.edu/prp/prp_Kue04.pdf".

- [5] Okin, G. S. and T. H. Painter, 2004: Effect of grain size on spectral reflectance of sandy desert surfaces. *Rem. Sens. Env.*, **89**(3), 272–280.
- [6] Qin, X., B. Cai and T. Liu, 2003: The atmospheric turbulence in the East Asia monsoon area since 60kaBP: A preliminary study of the multimodal grain size distribution of Chinese loess. *Submitted to J. Geophys. Res.*
- [7] Roberts, H. M., D. R. Muhs, A. G. Wintle, G. A. T. Duller and E. A. Bettis, III, 2003: Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. *Quaternary Research*, **59**, 411–419.
- [8] Sweeney, M. R., A. J. Busacca and D. Gaylord, 2003: High accumulations rates and the generations of thick Palouse loess via topographic traps, Juniper Canyon. *Proc. Geol. Soc. Amer.* 2003 Meeting.
- [9] Tsvetsinskaya, E. A., C. B. Schaaf, F. Gao, A. H. Strahler, R. E. Dickinson, X. Zeng and W. Lucht, 2002: Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula. *Geophys. Res. Lett.*, **29**(9), doi:10.1029/2001GL014096.
- [10] Zender, C. S., H. Bian and D. Newman, 2003a: Mineral Dust Entrainment And

- Deposition (DEAD) model: Description and 1990s dust climatology. *J. Geophys. Res.*, **108**(D14), 4416, doi:10.1029/2002JD002775.
- [11] Zender, C. S. and R. Pajarola, 2004: Interactive mesoscale forecasts, visualization, and environmental planning. "http://dust.ess.uci.edu/prp/prp_itr/prp_itr.pdf".
- [12] Zender, C. S., S. E. Trumbore, J. Famiglietti, G. Magnusdottir, J. K. Moore, M. J. Prather, F. Primeau and J.-Y. Yu, 2003b: Acquisition of an Earth System Modeling Facility for coupled climate, chemistry, and biogeochemistry studies. "http://dust.ess.uci.edu/prp/prp_mri/prp_mri.pdf".